Все материалы
На главную
Блог эзотерика
Статьи и заметки
Разделы
Карта сайта
Книги
Статьи


Все материалы arrow Разделы arrow Часть 1.Квантовая механика и квантовая электродинамика. Основы.
Часть 1.Квантовая механика и квантовая электродинамика. Основы. | Версия для печати |
Статьи - Мировоззрение
Написал Иван   
28.04.2009
Квантовая механика - это полная
загадок и парадоксов дисциплина,
которую мы не понимаем до конца,
но умеем применять
Гелл-Манн
Квантовую механику не понимает никто.
Р. Фейнман


Как мы уже убедились раньше, классическая и релятивистская механика дают ответ на многие вопросы движения больших объектов и с большими скоростями, вплоть до скорости света. Однако ряд физических фактов, связанных с движением и взаимодействием света с веществом, не укладывался в имевшиеся законы механики. Рассмотрим кратко эти явления и проследим, как они привели к механике микромира или квантовой механике и в рамках ее были объяснены.

Предварительно отметим несколько соображений. Первое - несмотря на отмеченное торжество точных количественных законов классической механики, в том числе и в объяснении движения планет, природа сил тяготения так до сих пор и не выяснена. Как мы неоднократно отмечали, сам Ньютон объяснял как движутся тела, а не почему, и более того, говорил по этому поводу: «Гипотез я не измышляю». В релятивистской механике Эйнштейну пришлось несколько изменить закон тяготения в соответствии с принципами теории относительности. Как известно, согласно ОТО расстояние между объектами нельзя преодолеть со скоростью больше скорости света, а согласно классической механике Ньютона это происходит мгновенно. Наличие у света энергии и массы приводит к искривлению световых лучей около массивных тел и сила тяготения изменяется. Но это не дает объяснения тому, что же такое силы тяготения. Хотя, как мы уже видели, Эйнштейн и пытался связать тяготение через любимую его геометрическую механику с искривлением пространства-времени. Второе - напомню еще раз, что и классическая, и релятивистская механика формально не возражают против движения и в будущее, и в прошлое, как это уже указывалось в главе 1.2, и не выделяют «стрелу времени». В этом тоже некая загадка, и это положение приводит к мысли, что мы что-то не учитываем при таком количественном описании движения тел. Природа не все позволила нам пока открыть! И наконец - нельзя не обратить внимания на формальное совпадение законов тяготения по Ньютону и взаимодействия электрических зарядов по Кулону. Естественно возникает предположение, что в этой закономерности также имеется глубокий смысл. Однако, как справедливо указывал Р. Фейнман [ ], до сих пор никому не удавалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Переходя от рассмотрения характера движения в макромире к явлениям микроскопического масштаба, т.е. порядка размеров атомов и элементарных частиц, можно отметить, что описывать такие явления обычными привычными нам терминами не удается. Это связано, по-видимому, с психологией сознания и человеку трудно найти сопоставления из реальной обыденной жизни с тем, что происходит как в мегамире (релятивистская механика), так и микромире (квантовая механика). Язык людей, выражающий то, что отражается в нашем сознании от восприятия реальных для нас макрообъектов классической механики, вероятно, не подходит для описания событий в микромире, хотя это и объясняется естественным стремлением находить подтверждение выведенных законов на опыте макроскопического уровня. И это понимали сами основатели квантовой механики - можно понять, что происходит в микромире, можно написать даже математические законы, отражающие это, но объяснить эти явления на вербальном уровне очень сложно, а может быть и невозможно. Мы уже приводили высказывание В. Гейзенберга по поводу того, что говорить обычным языком о квантовой теории очень сложно: «непонятно, какие слова надо употребить вместо соответствующих математических символов. Ясно одно: понятия обычного языка не подходят для обычного описания строения атомов». Мы пытаемся говорить о принципиально новых явлениях на языке старых представлений. Часто такая ситуация обусловлена еще и тем, что нам проще иметь дело с представлениями о реальности (теория всегда абстрактна и теоретические модели подчас «навязывают» природе свои законы, исходя, например, из того же антропного принципа), чем в самой реальностью. И мы, как правило, смешиваем одно с другим и принимаем свои символы и понятия за реальность. Упоминавшийся уже Ф. Капра в своей книге «Дао физики» [ ], сравнивая современную физику и восточный мистицизм и находя в них много общего, отмечал, что все используемые нами для описания природы понятия ограничены, они могут не являться свойствами действительности, а есть продукты мышления - частицы карты, а не местности. Выходит, что для описания явлений микромира надо преодолеть некий «лингвистический барьер» и говорить на адекватном этому миру «квантовомеханическом» языке. В этом смысле создание квантовой механики является поистине революцией не только в физике, но и в современном естествознании в целом.
Какие же противоречия в объяснении природы микромира привели к рождению квантовой механики? В первую очередь, это вопросы, касающиеся физической природы излучения и вещества, их сходства и различия. Конечно, мы не будем касаться здесь всей истории создания квантовой механики и ее физического, в том числе и
экспериментального, обоснования. Оставим, как я неоднократно говорил, это увлекательное дело физикам. Отметим лишь основное в понимании идей квантовой механики.
Характерным примером определенного противоречия является история света. Первоначально предполагалось ( Ньютон), что свет представляет собой поток мельчайших частиц, корпускул, как их тогда назвали, и все оптические явления в общем неплохо таким представлением описывались. Однако в дальнейшем, особенно в связи с осознанием того, что свет - это электромагнитные волны, выяснилось, что свет ведет себя действительно как волны (явления интерференции и дифракции). Затем для объяснения, например, спектра излучения абсолютно черного тела или фотоэффекта опять пришлось прибегать к представлению света как потока частиц (теперь из называют фотонами). Заметим, что абсолютно черное тело - физическая модель излучения твердого тела, где предполагается, что в идеальном случае все излучение выходит через маленькое отверстие во внешнее пространство (подобно открытой дверке топки печки). И так же, как в случае печки мы видим только топку и не видим всю печку, такое тело будет невидимым, в идеале - абсолютно черным телом. В то же время опыты с электронной дифракцией показывают, что электроны ведут себя как волны. Приведенных примеров в общем достаточно, чтобы увидеть, что свет проявляет себя то как волны, то как частицы - фотоны. Возник так называемый корпускулярно-волновой дуализм. Это противоречие («путаница» по Р. Фейнману) было разрешено введением уравнений квантовой механики к 1926-27 гг., в частности, постулированным уравнением Шредингера, которое, как уже упоминалось, является аналогом уравнения движения в квантовой механике, каким является уравнение Ньютона для классической частицы.
В дальнейшем выяснилось, что электроны ведут себя в этом смысле так же необычно, как и фотоны, т.е. проявляют этот самый дуализм. Более того, в 1924 г. де Бройль предложил идею о том, что любой частице, обладающей импульсом Р, можно сопоставить определенную длину волны
λ = h/Р (1.5.1)
Теперь эту волну, естественно, называют волной де Бройля. И следовательно квантово-механические частицы ( электроны, протоны, нейтроны и даже целые атомы) могут участвовать в таких волновых процессах как дифракция и интерференция. Это, кстати, находит свое широкое применение в технических методах экспериментальной физики при исследовании структуры вещества: (электронография, протонография, нейтронография и рентгенография). Связано это с тем, что часто оказывается (в зависимости от энергии излучения), что длина такой волны де Бройля для соответствующей частицы сравнима с межатомным расстоянием в кристалле и поэтому кристаллическая решетка действует как обычная дифракционная решетка и пучок частиц рассеивается на атомах кристаллической решетки.
В формуле (1.5.1) помимо λ и р присутствует еще величина h, которой нет в классической физике и которую в физике связывают с именем Планка. В нашем курсе мы часто касались вопросов поиска научных (не обязательно физических) законов, описывающих наш мир. И очень часто многие закономерности как бы «угадываются», вводятся априорно, в результате некоего озарения, и постулируются, т.е. не доказываются. Это, как ни странно на первый взгляд, свойственно математике. Как отмечал Р. Фейнман, угадывание уравнений. по-видимому, очень хороший способ открытия новых законов, и это показывает, что математика дает глубокое конкретное описание природы по сравнению с философскими принципами или интуитивными механическими аналогиями, которые не дают таких серьезных результатов. Многие фундаментальные законы ( Ньютон, Максвелл, Эйнштейн, Шредингер, тот же де Бройль, наконец, как здесь, Планк) были, можно сказать «подсказаны природой».
М. Планк в 1900 г. при объяснении спектра излучения абсолютно черного тела выдвинул идею, что обмен между излучением и веществом происходит не непрерывным образом, а дискретными порциями, квантами. При этом количество энергии, сопоставляемое кванту с частотой n (величина, обратная длине волны λ
E = hv, (1.5.2)
где h и есть постоянная Планка (h = 6,626 × 10-34 Дж × с).
Физический смысл постоянной Планка состоит в том, что если в классической физике минимальное количество действия может быть любым, то в квантово-механическом представлении оно не может быть меньше h. Не касаясь тонкостей доказательств, заметим, что в этих условиях энергия, импульс и момент импульса, о котором мы говорили, в главе 1.2 будут иметь дискретный спектр значений, т.е., как говорят физики, квантованы на величину h (или h = h/2). Поскольку значение h мало, то в каждом кванте заключено очень малое количество энергии и поэтому, возвращаясь в макромир, отметим, что в больших количествах энергии ее дискретная природа незаметна, поскольку небольшое изменение числа квантов оказывается пренебрежимо малым. Поэтому постоянная Планка имеет сугубо квантовый характер.
В 1905 г. Эйнштейн для объяснения фотоэлектрического эффекта также постулировал, что все электромагнитное излучение, т.е. не только тепловое, имеет квантовый характер и состоит из квантов - фотонов. Напомним, что фотоэлектрический эффект ( фотоэффект) - это явление испускания электронов веществом под действием света. Согласно Эйнштейну кинетическая энергия вылетающего фотоэлектрона равна разности между энергией фотона и минимальной энергией, необходимой для освобождения электрона из вещества, которая называется работой выхода j:
Eкин = hν- φ (1.5.3)
Эта теория была успешно подтверждена Р. Милликеном в 1923 г., получившим за это Нобелевскую премию. Любопытно, что в 1921 г. Нобелевская премия была присуждена и самому Эйнштейну, но отнюдь не за его теорию относительности, а именно за теорию фотоэлектрического эффекта.

Сделаем еще несколько замечаний по поводу понимания микромира. Корпускулярно-волновой дуализм как некая двусмысленность может стать более понятным, если мы учтем, что рассматривая поведение электрона или фотона как поведение частицы или волны, мы опять же навязываем классическое описание объектам, имеющим не классическую природу. Из этого еще раз следует, что при рассмотрении природы на микроуровне мы должны понимать ее на адекватном квантово-механическом языке. Второе замечание относится к измерениям на квантовомеханическом уровне. Еще Галилей сказал: «...гораздо легче измерять, чем знать, что измерять». Оказывается, что при описании поведения квантовых частиц сам объект изучения микромира и экспериментальный прибор составляют единую систему. Это, с одной стороны, показывает, что наблюдая микрообъект, мы в результате этого наблюдения влияем на него. Причем это не обязательно относится лишь к электронам, фотонам и т.д. Это может быть и клетка, структуру которой мы наблюдаем флуоресцентным методом иммунного анализа и которую мы изменяем или даже убиваем таким воздействием. А с другой стороны, рассматривать поведение изучаемого микрообъекта имеет смысл только исходя из результатов измерений.
Следовательно, проявление квантового объекта в качестве или частицы, или волны будет зависеть от того, что и как мы измеряем. А это означает, что волновой или корпускулярный характер квантовая частица приобретает лишь в глазах экспериментатора. Кстати, и в обычной классической физике измерения проводятся всегда с некоторой погрешностью. Математически процесс измерения описывается как
, (1.5.4)
где f(x) - истинное значение измеряемой величины; g(x - y) - инструментальная функция измерительного прибора; F(y) - измеряемая прибором физическая величина. В математике выражение (1.5.4) называется сверткой. Лишь в идеале инструментальная функция g(x - y) может описываться так называемой δ-функцией Дирака и тогда = 1 и F(y) и f(x) совпадут. Однако в реальном процессе измерения этого нет и погрешность измерения тем больше, чем больше отличие g(x - y) от δ-функции, т.е. искажение в измерениях тем больше, чем более «расплывчата» инструментальная функция. Другими словами, даже при обычных макроизмерениях мы находим какие-то параметры с некоторой вероятностью.
В квантово-механических измерениях это имеет принципиальное значение и связано с тем, что в микромире для частиц нет понятия траекторий в обычном макроскопическом смысле.

 
< Пред.   След. >

Дизайн сайта Padayatra Dmytriy