Все материалы
На главную
Блог эзотерика
Статьи и заметки
Разделы
Карта сайта
Книги
Статьи
Контакты


Все материалы arrow Разделы arrow Практика arrow Часть 2.Квантовая механика и квантовая электродинамика. Основы.
Часть 2.Квантовая механика и квантовая электродинамика. Основы. | Версия для печати |
Статьи - Мировоззрение
Написал Иван   
28.04.2009
Взаимодействие электронов и фотонов с веществом выражается на языке вероятностей, т.е. можно лишь говорить о некоторой вероятности нахождения частицы с данным импульсом (скоростью, энергией) в какой-то части пространства. А точность этого определения (измерения) определяется соотношением неопределенности Гейзенберга, введенным им в 1927 г. как раз через приведенную постоянную Планка :
(1.5.5)
Физический смысл этого соотношения состоит в том, что в природе должен существовать принцип, ограничивающий возможности любых экспериментов (измерений). Применительно к квантово-механической частице это означает, что изменение импульса частицы р и изменение ее координаты х точно не определены. Лучше сказать определены, но лишь с точностью до величины минимального действия . Поэтому физики и говорят, что одновременно точно измерить ни координату, ни импульс нельзя, а можно определить их только с точностью до кванта минимального действия . Из (1.5.5) также следует, что измеряя сколь угодно точно одну из величин, мы получаем неопределенность в другой, поскольку их произведение равно определенной величине . Таким образом, принцип неопределенности имеет принципиально вероятностный характер предсказания событий. Квантовая теория не может предсказать результат отдельного события, однако она дает с большой точностью средние значения для большого числа событий.
Заметим, что мерой вероятности поведения квантовой частицы является введенная Шредингером в его уравнении так называемая волновая функция ψ(x), которая используется для вычисления вероятности того, что частицу можно обнаружить в данной точке. Сама функция ψ не имеет прямого физического смысла - это лишь математическая запись возможности ( вероятности) определения, но сходная с понятием амплитуды волны. Причем было показано, что непосредственно ее измерить нельзя, можно измерить лишь интенсивность (физически она связана с энергией), которая пропорциональна квадрату модуля волновой функции |ψ(х)|2 или плотности вероятности. Поэтому реальное физическое значение квантово-механическая волновая функция |ψ(х)| обретает только в виде |ψ(х)|2. Таким образом, плотность вероятности |ψ(х)|2 и дает распределение вероятности нахождения частицы в пространстве. Такой способ описания поведения частицы и принцип неопределенности Гейзенберга хорошо согласуются с корпускулярно-волновым дуализмом. Волну нельзя локализовать в пространстве и поэтому любое измерение поведения частицы, проявляющей и волновые свойства, принципиально связано с неопределенностью. Принцип неопределенности Гейзенберга как раз и дает количественное выражение этой неопределенности.
Бор в 1928 г. обобщил и более широко трактовал принцип неопределенности Гейзенберга в своем принципе дополнительности, смысл которого в обобщенной формулировке состоит в том, что получение экспериментальной информации об одних физических параметрах неизбежно приводит к потере других, дополнительных параметрах, которые характеризуют это же явление (эффект) несколько с другой стороны. В физическом смысле такими дополнительными друг к другу свойствами, помимо упомянутых координаты и импульса, могут быть также волновой и корпускулярный характер вещества или излучения, энергия и длительность события (измерения). Для последних также имеется соотношение неопределенности в виде
(1.5.6)
где ∆Е = Е2 - Е2 разность значений энергии в моменты времени t1 и t2 , разделенные промежутком ∆t. С точки зрения квантовой физики роль измерительного прибора состоит как бы в «приготовлении» квантового состояния (как - неясно: мифический «черный ящик»). Поэтому считается, что принцип дополнительности Бора объективно отражает поведение квантовых систем и не связан с существованием экспериментатора, проводящего измерения. Таким образом, квантово-механическая неопределенность, выражаемая через принцип неопределенности Гейзенберга, входит составной частью в более общий принцип дополнительности Бора.
На более широком трактовании принципа Бора в современном естествознании и в гуманитарном восприятии мира мы уже останавливались в разд. 1.1. Здесь же приведем еще несколько иллюстраций этого принципа в высказываниях физиков и лириков, ученых естественного направления и гуманитариев, из которых виден универсализм этого принципа. Так, Дирак говорил: «Бор считал, что высшая мудрость должна быть выражена обязательно такими словами, смысл которых не может быть определен однозначно. Следовательно истинность высшей мудрости не является абсолютной, а только относительной: поэтому противоположное высказывание также правомерно и мудро». Сам Бор считал, что «каждое высказывание надо понимать и как утверждение, и как вопрос». В свою очередь Гете писал: «Образ, дивно расчлененный, пропадает навсегда». А. Эйнштейн подчеркивал, что «физические понятия суть свободные творения человеческого разума и неоднозначно определены внешним миром». Пуанкаре говорил, что «никакой физический опыт не может подтвердить истинность одних преобразований и отвергнуть другие как недопустимые». Он же отмечал, что «изучая историю науки, мы замечаем два явления, которые можно назвать взаимопротивоположными: то за кажущейся сложностью скрывается простота, то напротив - видимая простота таит в себе чрезвычайную сложность». Эйнштейн: «Как много мы знаем и как мало понимаем». А. Мень писал, что «наука и религия - эти два пути познания реальности - должны быть не просто независимыми сферами, но в гармоническом сочетании способствовать общему движению человечества по пути к истине». Не зная, естественно, принципа Бора, Гете (а он, кстати, занимался и наукой, чему свидетельствует его книга «Избрание сочинения по естествознанию»), тем не менее говорил, что «между двумя противоположными мнениями находится не истина, а проблема» [ ].

Очень хороший пример дополнительности восприятия художником и передаче его в картинах приводит Б. Раушенбах [ ]. При изображении, например, комнаты один считает важным стены и точно передает их вид, пренебрегая полом. Другой изобразит пол таким, как он видит, неумолимо искажая передачу стен. Можно по-разному расставлять акценты. Выбор того или иного варианта - дело восприятия и целей самого художника. Поэтому слова художников «я так вижу» имеют и объективный физический смысл: для одного важна вертикаль (стены), для другого пол (горизонталь). А вместе - не получается! Если он хочет правильно нарисовать пол, то «наврет» в изображении стен, а другой, которому важны стены, обязательно «наврет» в изображении пола. Каждый из них то, что для него важнее, передает лучше, «правильнее», пренебрегая другим. Как отмечал Б. Раушенбах: «Один передает безупречно одно, другой - другое, и получаются разные картины, и все они одинаково правильны и одинаково неправильны, и это справедливо». Заметим, кстати, что и действуют такие картины на нас по-разному, а ведь изображен на них один и тот же объект.
Можно привести еще одно соображение, связанное с этим всеобщим по существу законом дополнительности. Это «принцип равноправия», взаимоуважения участников любой дискуссии как реализация в гуманитарном плане идей Бора, когда каждый специалист не только уважает мнение другого, но и готов ограничить сферу своего мнения так, чтобы оно вписывалось в допустимые рамки, устанавливаемые извне другими специалистами. Применительно к научным подходам прогнозирования также можно отметить правильность принципа Бора: чем больше простота и шире область исследования, тем меньше точность и конкретность оценки. Интересную трактовку принципа дополнительности Бора на «бытовом», так сказать, уровне можно извлечь из эссе «Низкие истины» нашего известного кинорежиссера А. Кончаловского, который, возможно, и не слышал вовсе ни о каком Боре: «Человек, свободный внешне, должен быть чрезвычайно организован внутренне. Чем более человек организован, то есть внутренне не свободен, тем более свободное общество он создает. Каждый знает пределы отведенной ему свободы и не тяготится ее рамками. Самоограничение каждого - основа свободы всех. Очень часто приходится слышать о свободе русского человека. Да, русские действительно чрезвычайно свободны внутренне, и не удивительно, что компенсацией этому является отсутствие свободы внешней. Свободное общество они пока создать не в состоянии именно из-за неумения себя регламентировать. Каждый хочет быть свободен сам - всем стать свободными при этом заведомо не реально». Воистину, великий принцип Бора работает везде! Возвращаясь к физике, следует отметить, что современная теория строения атома также основана на квантово-механических представлениях. Паули сформулировал принцип, позволяющий объяснить расположение электронов по оболочкам. Классическое представление о планетарной модели атома и орбитах электронов было заменено волновой механикой и квантовой теорией элементарных процессов. Не будем здесь останавливаться на физических деталях проблемы строения вещества. Они достаточно сложны для общего понимания нашего курса, но мы должны согласиться, что они хорошо описывают природу микромира и его закономерности, и с ними, конечно, можно ознакомиться по соответствующим физическим курсам.
Однако сделаем одно общее замечание, касающееся упомянутых ранее свойств времени. Мы уже видели, что ни Ньютон, ни Эйнштейн в своих механиках и уравнениях движения формально, не получили «стрелы времени», и тем самым «разрешили» вольно двигаться во времени. Оказалось, что так тонко построенная квантовая механика, правильно отражающая события в микромире, также не вносит ничего нового в понимание процессов времени при движении квантовых частиц. Вероятно, это связано с тем, что в квантовое уравнение движения Шредингера волновая функция ψ(x) входит в квадрате, и имеет она реальный физический смысл тоже как |ψ(х)|2.

Кроме того согласно Эйнштейну гравитация проявляется в кривизне пространства-времени. Поэтому в квантовой теории гравитации Вселенной структура пространства-времени и его кривизна должны флуктуировать, поскольку квантовый мир никогда не находится в покое и вероятностен. Эти флуктуации не обнаруживаются в макромире, как уже говорилось, из-за малой величины постоянной Планка h, которая определяет область проявления квантово-механических свойств. В связи с этим последовательность событий, ход времени могут быть другими, чем в классической и релятивистской механике. Вполне вероятно, что мы их просто еще не открыли.

Результаты и идеи квантовой теории позволили построить новый раздел современной физики о движении заряженных микрочастиц, учитывая их квантово-механическую природу - квантовую электродинамику. Огромный вклад в эту физику внес нобелевский лауреат Р. Фейнман. По существу здесь рассматривается квантовая природа электромагнитного поля, и поскольку движение заряженных микрочастиц есть всеобщее явление природы, то квантовая электродинамика, можно сказать, описывает все явления физического мира, за исключением гравитации и радиоактивности. Эта теория проверялась в диапазоне размеров от ста диаметров Земли до одной сотой атомного ядра и точность предсказаний была поистине потрясающей. Например, вычисленное на ее основе значение собственного магнитного момента электрона совпадает с полученной из эксперимента величиной до 10-6. Чтобы оценить такую точность совпадения, как писал Р. Фейнман [ ], надо измерить расстояние от Нью-Йорка до Лос-Анжелеса с точностью до толщины человеческого волоса!

Конечно, надо понимать, как указывает Фейнман, что этот расчет относится к отдельным электронам и частицам, и не забывать о том, что их много и для их описания требуется вероятностный подход. Мы не будем дальше касаться квантовой электродинамики не только потому, что изучаем не физику, а современное естествознание, но и из-за того, что это потребует большого объема объяснений, а любознательные и пытливые могут почерпнуть массу интересного о ней в замечательных научно-популярных книгах Фейнмана, как будто специально написанных для иллюстраций могущества и торжества физики в проблемах современного естествознания, и в его известных фейнмановских лекциях по физике. Это позволит оценить красоту (с научной точки зрения!) нашего прекрасного мира и вместе с тем получить физическое представление о мире, которое, по мнению Фейнмана, и составляет главную часть истинной культуры нашего времени. Однако уместно было бы привести и замечание редактора русского перевода фейнмановских лекций по физике Смородинского: «В действительности выучить формулы и уравнения, пожалуй, легче, чем следовать физическим рассуждениям и понимать логику явлений природы, которая часто выглядит очень странной». Впрочем об этом говорил и сам Фейнман в своей нобелевской лекции в 1965 году [ ]. В заключение отметим, что физические явления в микромире починяются другим законам, чем в классической и релятивистской механике. Логично было бы спросить: а может ли проявляться тяготение в микромасштабах? На этот вопрос могла бы ответить квантовая теория гравитации, но ее пока нет, поскольку нет теории тяготения, согласованной с квантово-механическими принципами и принципом неопределенности.
 
< Пред.   След. >

Дизайн сайта Padayatra Dmytriy